Свойства керамических материалов и изделий

Свойства керамики

По составу и свойствам керамические изделия делят на типы, виды и разновидности.

Тип керамики определяется

составом и соотношением отдельных фаз

, их обработкой, особенно тонкостью помола,

температурой и длительностью обжига.

В состав масс всех типов керамики входят пластичные глинистые вещества (глина, каолин), отощающие материалы (кварц, кварцевый песок), плавни (полевой шпат, пегматит, перлит, костяная зола и др.) При обжиге отформованных изделий в результате сложных физико-химических превращений и взаимодействий компонентов масс и глазурей, формируется их структура.

По характеру строения керамику подразделяют на грубую и тонкую.

Изделия грубой керамики (гончарные изделия, кирпич, черепица) имеют пористый крупнозернистый черепок неоднородной структуры, окрашенный естественными примесями в желтовато-коричневые цвета.

Тонкокерамические изделия отличаются тонкозернистым белым или светлоокрашенным, спекшимся или мелкопористым черепком однородной структуры.

По степени спекания (плотности) черепка различают керамические изделия:

— плотные, спекшиеся с водопоглощением менее 5% — фарфор, тонкокаменные изделия, полуфарфор;

— пористые с водопоглощением более 5% — фаянс, майолика, гончарные изделия.

В зависимости от строения различают:

— грубую имеют пористый крупнозернистый в изломе черепок неоднородной структуры, окрашенный естественными примесями в желтовато-коричневые цвета (пористость 5-30%) — гончарная керамика — гончарные изделия, кирпич, черепица. К грубой керамике относят многие строительные керамические материалы, например лицевой кирпич

— тонкую керамику отличается тонкозернистым белым или светлоокрашенным, спекшимся стекловидным или мелкопористым черепком однородной структуры (пористость

Свойства керамических изделий зависят как от состава применяемых масс, так и от технологических особенностей их производства.

Керамика необходима там, где требуется высокая устойчивость к внешнему воздействию: высокая температура, истирание, агрессивные среды и т.д.

Неизменность структуры и свойств обеспечивают прочные химические связи.

Благодаря уникальности своих свойств керамики получили заслуженное признание в различных отраслях техники.

Физические и механические свойства керамик определяются характером химической связи и кристаллической структурой.

В зависимости от назначения керамики получение заданных свойств изделий достигается подбором сырьевых материалов и добавок и особенностями технологии.

К основным свойствам относятся плотность, механическая прочность, твердость, пористость, термическая стойкость, химическая устойчивость, белизна, просвечиваемость, скорость распространения звуковых волн.

Керамики характеризуются высокой твёрдостью, жёсткостью, относительно высоким пределом прочности на сжатие и недостатком пластичности.

Твердость. Даже пористая гончарная глина царапает стекло, т.к. содержит частицы кварца (по Моосу 7).Техническая керамика содержит в своем составе окись алюминия ( по Моосу 9) – сапфир, рубин. Наиболее полно это свойство используют в абразивных керамических материалах – карбид кремния, окись алюминия, нитрид бора и углерода – твердые и сверхтвердые материалы.

Механическая прочность — одно из важнейших свойств, от которого зависит долговечность изделия. Обладает достаточно высокой прочностью. Прочность сильно зависит от пористости керамики. глиняный горшок, фарфоровая чашка с тонкими стенками… Удельная механическая прочность, т. е. отношение приложенного усилия к единице толщины дна, определяется по методу свободного падения стального шарика по дну изделия. У фаянса она более высокая, чем у фарфора. Прочность на удар по методу маятника наоборот у фаянсовых изделий ниже, чем у фарфоровых.

Хорошо выдерживает напряжения сжатия, хуже изгиба и совсем плохо напряжения растяжения (35-350 МПа, обычный кирпич 5 МПа, стальная проволока рояльная 3100 МПа, кожа 40 МПа, человеческий волос 190 МПа). При конструировании формы изделия рассчитывают форму так, чтобы возникающие в процессе эксплуатации усилия приводили к напряжениям сжатия или изгиба.(картинка).

Плотность зависит от состава и пористости фарфора равна 2,25-2,4 г/см³, а фаянса — 1,92-1,96 г/см³.

Пористость определяют методом водопоглощения, которая у фарфора составляет 0,01-0,2%, а у фаянса — 9-12%.

Огнеупорность – устйчивость к действию высоких температур.Востребована в печах и агрегатах для выплавки металлов. Т 1000-3000. При Т более 1000 прочнее любых сплавов. Зависит от состава, т.е. от температуры плавления основных ее компонентов. Не все керам материалы являются огнеупорными, вся строительная керамика, хозяйственно-бытовая – невысокие температуры эксплуатации. Пожар выдержат, но глазурное покрытие покроется цеком.

Огнеупорностью называют свойство керамических материалов и изделий противостоять воздействию высоких температур, не расплавляясь. Показателем (количественной мерой) огнеупорности является температура, при которой образец из данного материала, имеющий форму трехгранной усеченной пирамиды (условно именуется «конусом»), деформируется под влиянием собственной тяжести, касаясь при этом своей вершиной керамической подставки.

Термостойкость характеризует способность изделия выдерживать резкие смены температур. Для глазурованных плиток =125-150 С, что означает возможность резкого перепада от этой температуры до 20 С без образования трещин.

Термостойкие материалы должны иметь низкий температурный коэф. лин. расш., высокую теплопроводность и мех прочность.

Наиболее термостойкой является кварцевая керамика, керамика на основе кордиерита, сподумена.

Наиболее термостойкие из художественной керамики фарфор и каменная керамика – делают чайники, чашки. Термическая стойкость фарфоровых изделий выше, чем у фаянсовых. Так, в соответствии с действующими ГОСТами 28390-89 и 28391-89 термостойкость фарфоровых изделий должна быть 185°С, фаянсовых — от 125°С (для бесцветных глазурей) и 115°С (для цветных глазурей).

Химические связи в керамиках весьма прочны, поэтому керамики характеризуются также высокими температурами плавления и химической устойчивостью.

Карбид титана TiC 3120

Борид титана TiB2 2980

Карбид вольфрама WC

Оксид алюминия Al2O3 2050

Оксид хрома Cr2O3 1990

Торстерит 2MgO·SiO2 1830

Муллит 3Al2O3·2SiO2 1810

Оксид кремния (кристобалит) 1715

Оксид титана TiO2 1605

Отсутствие свободных электронов служит причиной того, что керамики, как правило, плохо проводят электричество и тепло. Поэтому керамики широко используются в электротехнике как диэлектрики.

Потребности вакуумной техники в керамике связаны, в первую очередь, с их высокими диэлектрическими качествами, высокой химической стойкостью (в том числе и при высоких температурах) и высокой температуростойкостью.

отсутствие у большинства материалов гигроскопичности,

хорошие электрические (пьезоэлектрические, сегнетоэлектрические)

и магнитные характеристики при достаточной механической прочности, стабильности характеристик и надежности,

стойкость к воздействию излучения высокой энергии и использование достаточно дешевого и доступного сырья обеспечило их широкое применение в различных областях.

Гигроскопичность — керамика является экологически чистым продуктом и имеет капиллярную структуру, позволяющую стене «дышать». Стена из такого материала выполняет функцию естественного кондиционера: вбирает влагу при ее избытке и отдает при недостатке, поддерживая здоровый температурно-влажностный баланс в жилом помещении. Поверхность стены остается сухой в любое время года, что, в свою очередь, предотвращает образование грибка и плесени.
В Европе керамический блок хорошо знают и любят. На сегодняшний день более половины зданий возводятся из этого материала. Теперь этот материал пришел и на российский рынок и уверенно продолжает его завоевание благодаря своим неоспоримым преимуществам.

Эстетические свойства керам материалов сложно охарактеризовать однозначно, так как слишком различны составы, фактуры поверхности и способы декорирования.

Для гончарной керамики и терракоты большую роль играет фактурность поверхности и теплые тона естественных природных окрасок. терракотовый цвет.

Декоративность майолики, фаянса, фарфора связана в первую очередь с покрытием глазурью и росписью. Фаянс – ощутимая толщина, грубость формы, фарфор изящная холодность, просвечиваемость.

Оценивая эстетические свойства керам изделий можно подчеркнуть их пластичность и естественность форм, многообразие фактур и расцветок, т.е .высокие декоративные возможности.

Керамика один из самых экологически чистых материалов.

Белизна — способность материала отражать падающий на него свет. Особенно важна белизна для фарфоровых изделий. Белизна определяется визуально путем сравнения испытуемого образца с эталоном или с помощью электрического фотометра, а также на «Спеколе».

Скорость распространения звуковых волн для фарфоровых изделий в 3-4 раза выше, чем у фаянсовых, поэтому при ударе деревянной палочкой по краю фарфоровые изделия издают высокий звук, а фаянсовые — глухой.

Просвечиваемость характерна для фарфора, который просвечивает при большой толщине изделия, так как имеет спекшийся черепок. Фаянсовые изделия не просвечивают из-за пористого черепка.

Твердость глазурного слоя по минералогический шкале для фарфора составляет 6,5-7,5, а для фаянса — 5,5-6,5, микротвердость определяется вдавливанием алмазной пирамидки. Фарфоровые глазури считаются твердыми, майоликовые — мягкими, а фаянсовые относятся к средним.

Химическая устойчивость глазурей и керамических красок, применяемых для бытовых фарфоровых и фаянсовых изделий, должна быть высокой, так как при обработке слабыми кислотами и щелочами при обыкновенной температуре или при нагревании до 60-65°С они не должны разрушаться.

Цвет “живой глины” обманчив. Высохшая на воздухе, она, как правило, лишь немного светлеет. Но при обжиге большинство глин резко меняют свой цвет: зеленая становится розовой, бурая — красной, синяя и черная — белой. Например, мастера из села Фнлимоново под Тулой лепят свои знаменитые игрушки из черно-синей глины, которая после обжига приобретает белый, чуть кремоватый цвет. Здесь в печи при обжиге выгорают все органические частицы, которые придавали ей “живую” черную окраску. Только белая глина и после обжига остается белой.

| следующая лекция ==>
Состав и структура | Терракота

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Общие свойства керамических строительных материалов и изделий.

Классификация керамических строительных материалов и изделий.

Строительные керамические материалы и изделия в зависимости от основного назначения делятся на группы:

а) стеновые материалы — кирпич глиняный обыкновенный, кирпич глиняный пустотелый и пористо-пустотелый пластического прессования, кирпич глиняный пустотелый полусухого прессования, камни керамические пустотелые пластического прессования, кирпич строительный легкий.

б) кирпич и камни строительные глиняные специального назначения — кирпич глиняный лекальный, камни для канализационных сооружений (подземных коллекторов), кирпич для дорожных одежд (мостовой клинкер).

в) изделия керамические пустотелые для перекрытий — камни для часторебристых покрытий (сборных или монолитных), камни для армокерамических балок, камни для накатов, а также панели перекрытий и покрытий, изготовленные из отдельных керамических камней;

г) изделия керамические для облицовки фасадов зданий — кирпич и камни керамические лицевые, ковровая керамика, плитки керамические малогабаритные, плиты керамические фасадные, подоконные сливы;

д) изделия керамические для внутренней облицовки — плитки для облицовки стен, детали встроенные, плитки для полов;

Читайте также  Материалы для конопатки дома из бревна

е) кровельные материалы — черепица глиняная;

ж) трубы керамические канализационные и дренажные;

з) изделия керамические кислотоупорные — футеровочные (кирпич кислотоупорный нормальный, плитки кислотоупорные и др.), трубы кислотоупорные и фасонные части к ним.

По строению черепка они делятся на две группы: с пористой структурой (пористость больше 5%) — кирпич, черепица, архитектурно-отделочная керамика и др. — и с плотной камневидной структурой, спекшиеся (пористость менее 5%) — плитки для полов, канализационные трубы.

К тонкой керамике относятся тонкостенные изделия из бело- или светложгущихся глин и каолинов с мелкозернистым, обычно белым и часто просвечивающим черепком. Изделия из тонкой керамики могут также быть пористыми (из фаянса) и плотными, неглазурованными, например из технического фарфора, и покрытыми прозрачной или глухой глазурью, например электротехнический фарфор, скульптурные изделия.

Общие свойства керамических строительных материалов и изделий.

Свойства керамических изделий определяются видом и качеством исходного сырья, способом его переработки, условиями формования, тепловой обработки, степенью спекания, обусловливающей структуру черепка, соотношение кристаллической, стекловидной (аморфной) и газообразной фаз и их физико-химическую природу.

Прочность строительной керамики колеблется в широких пределах. Так, предел прочности при сжатии стеновой керамики изменяется от 7,5 до 30 МПа, дорожного кирпича — от 40 до 100 МПа.

Водопоглощение керамических изделий — косвенная характеристика их пористости, а следовательно, и плотности. Оно оказывает значительное влияние на другие свойства: морозостойкость, воздухо- и паропроницае- мость, прочность сцепления с раствором и др. Водопоглощение плотных керамических изделий со спекшимся черепком не превышает 5% по массе, пористых— 5— 30 %. Стеновые керамические изделия для надежного сцепления со строительным раствором должны иметь водопоглощение не менее 6—8 %.

Плотность керамических изделий определяется в основном степенью спекания. По средней плотности стеновые материалы в сухом состоянии делят на классы: А — с плотпостью 700—1000 кг/м3, Б — 1000—1300 кг/м3, П — 1300—1450 кг/м3, Г —более 1450 кг/м3. С понижением средней плотности уменьшается теплопроводность керамических изделий, что позволяет сократить толщину наружных стен.

Морозостойкость керамических изделий обусловливает их долговечность, так как определяет способность изделий в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного понижения прочности (не более 15%). Вода, замерзшая в порах материала, увеличивается в объеме почти на 9 %, в связи с чем давление льда в порах может достигать 280 МПа. Марки керамических материалов по морозостойкости: 15, 25, 35, 50, 75, 100.

Морозостойкость керамических материалов зависит от их предела прочности при растяжении, модуля упругости и структуры.

Теплопроводность керамических изделий зависит от их средней плотности, структуры черепка и его влажности. Теплопроводность абсолютно плотного черепка равна 1,1бВт/(м-°С). Уменьшение средней плотности с 1800 до 700 кг/м3 путем повышения пористости и создания пустот в керамике приводит к снижению ее теплопроводности с 0,8 до 0,21 Вт/(м-°С). Увлажнение керамических изделий и замерзание воды в их порах приводит к резкому повышению теплопроводности изделий, так как теплопроводность воды [0,58 Вт/(м-°С)] выше теплопроводности воздуха в 2 раза, а теплопроводность льда выше теплопроводности воздуха в 8 раз.

Общие сведения о керамических материалах и изделиях

Керамическими называют материалы и изделия, изготовляемые формованием и обжигом глин. «Керамос»- на древнегреческом языке означало гончарную глину, а также изделия из обожженной глины. В глубокой древности из глин путем обжига получали посуду, а позднее (около 5000 лет назад) стали изготовлять кирпич, а затем черепицу.

Большая прочность, значительная долговечность, декоративность многих видов керамики, а также распространенность в природе сырьевых материалов обусловили широкое применение керамических материалов и изделий в строительстве. В долговечности керамических материалов можно убедиться на примере Московского Кремля, стены которого сложены почти 500 лет назад.

Керамические изделия по плотности можно условно разделить на две основные группы: пористые и плотные.

Пористые керамические изделия впитывают более 5% по весу воды. В среднем водопоглощение пористых изделий составляет 8 — 20% по весу или 15 — 35% по объему.

Плотные изделия характеризуются водопоглощением менее 5%. Чаще всего оно составляет 2 — 4% по весу или 4 — 8% по объему.

По назначению в строительстве различают следующие группы керамических материалов и изделий:

  • стеновые материалы (кирпич глиняный обыкновенный, пустотелый и легкий, камни керамические пустотелые);
  • кровельные материалы и материалы для перекрытий (черепица, керамические пустотелые изделия);
  • облицовочные материалы для наружной и внутренней облицовки (кирпич и камни лицевые, плиты керамические фасадные, малогабаритные плитки);
  • материалы для полов (плитки);
  • материалы специального назначения (дорожные, санитарно-строительные, химически стойкие, материалы для подземных коммуникаций, в частности трубы, теплоизоляционные, огнеупорные и др.);
  • заполнители для легких бетонов (керамзит, аглопорит).

Наибольшего развития достигли стеновые материалы, причем наряду с общим увеличением объема производства особое внимание обращено на увеличение выпуска эффективных изделий (пустотелый кирпич и камни, керамические блоки и панели и т. д.). Предусмотрено также расширить производство фасадной керамики, особенно для индустриальной отделки зданий, глазурованных плиток для внутренней облицовки, плиток для полов, канализационных и дренажных труб, санитарно-строительных изделий, искусственных пористых заполнителей для бетонов.

СЫРЬЕ ДЛЯ ПРОИЗВОДСТВА КЕРАМИЧЕСКИХ МАТЕРИАЛОВ И ИЗДЕЛИЙ.

Сырьевые материалы, используемые для изготовления керамических изделий, можно подразделить на пластичные глинистые (каолины и глины) и отощающие (шамот, кварц, шлаки, выгорающие добавки). Для понижения температуры спекания в глину иногда добавляют плавни. Каолин и глины объединяют общим названием — глинистые материалы.

1. ГЛИНИСТЫЕ МАТЕРИАЛЫ

Каолины. Каолины образовались в природе из полевых шпатов и других алюмосиликатов, не загрязненных окислами железа. Они состоят преимущественно из минерала каолинита. После обжига присущий им белый или почти белый цвет сохраняется.

Глины. Глинами называют осадочные породы, представляющие собой тонкоземлистые минеральные массы, способные независимо от их минералогического и химического состава образовывать с водой пластичное тесто, которое после обжига превращается в водостойкое и прочное камневидное тело.

Состоят глины из тесной смеси различных минералов, среди которых наиболее распространенными являются каолинитовые, монтмориллонитовые и гидрослюдистые. Представителями каолинитовых минералов являются каолинит и галлуазит. В монтмориллонитовую группу входят монтмориллонит, бейделлит и их железистые разновидности. Гидрослюды — в основном продукт разной степени гидратации слюд.

Наряду с этими минералами в глинах встречаются кварц, полевой шпат, серный колчедан, гидраты окислов железа и алюминия, карбонаты кальция и магния, соединения титана, ванадия. Такие примеси влияют как на технологию керамических изделий, так и на их свойства. Например, тонкораспределенный углекислый кальций и окислы железа понижают огнеупорность глин. Если в глине имеются крупные зерна и песчинки углекислого кальция, то при обжиге из них образуются более или менее крупные включения извести, которая на воздухе гидратируется с увеличением объема (дутики), что вызывает образование трещин или разрушение изделий. Соединения ванадия служат причиной появления зеленоватых налетов (выцветов) на кирпиче, что портит внешний вид фасадов.

Глины часто содержат также органические примеси. По отношению к действию высоких температур различают глины трех групп: огнеупорные (огнеупорность выше 1580°С), тугоплавкие (1350 — 1580°С) и легкоплавкие (ниже 1350°С). К огнеупорным относятся большей частью каолинитовые глины, содержащие мало механических примесей. Такие глины используют для производства фарфора, фаянса и огнеупорных изделий. Тугоплавкие глины содержат окислы железа, кварцевый песок и другие примеси в значительно большем количестве, чем огнеупорные, и применяются для производства тугоплавкого, облицовочного и лицевого кирпича, плиток для полов и канализационных труб. Легкоплавкие глины наиболее разнообразны по минералогическому составу, содержат значительное количество примесей (кварцевого песка, окислов железа, известняка, органических веществ). Используют их в кирпичном и черепичном производствах, в производстве легких заполнителей и т. д.

В производстве искусственных обжиговых материалов можно применять также некоторые другие осадочные породы: диатомиты, трепелы и их уплотненные разновидности — опоки, а также сланцы в чистом виде и с примесью глин или порообразующих добавок.

2. ОТОЩАЮЩИЕ МАТЕРИАЛЫ

Для уменьшения усадки при сушке и обжиге, а также для предотвращения деформаций и трещин в жирные пластичные глины вводят искусственные или природные отощающие материалы.

В качестве искусственных отощающих материалов используют дегидратированную глину и шамот, а также отходы производства (котельные и другие шлаки, золы, очажные остатки и т.д.). Дегидратированную глину получают нагреванием обычной глины примерно до 600-700°С (при этой температуре она теряет свойство пластичности) и применяют в качестве отощителя при производстве грубой строительной керамики. Шамот изготовляют путем обжига огнеупорных или тугоплавких глин при температурах 1000 — 1400°С. Шамот является основным сырьем в производстве огнеупорных шамотных изделий.

К природным отощающим материалам относятся такие вещества, которые неспособны в смеси с водой образовывать пластичную массу, например кварцевые пески, пылевидный кварц.

Порообразующие материалы. В производстве изделий грубой строительной керамики, например кирпича, для отощения массы, а также для получения изделий, обладающих повышенной пористостью и, следовательно, пониженной теплопроводностью, в сырьевую массу вводят порообразующие добавки. Обычно применяют органические добавки, называемые выгорающими, — древесные опилки, уголь, торфяную пыль, и др. Они выгорают при обжиге изделий и образуют поры.

Плавни. Введение в глину плавней способствует понижению температуры ее спекания. К числу плавней относятся полевые шпаты, железная руда, доломит, магнезит, тальк и др.

Свойства керамических материалов и изделий

К керамическим материалам предъявляются различные требования соответственно тем воздействиям, которые они испытывают при использовании их в строительстве. В связи с этим необходимо знать основные свойства керамического материала и пути их регулирования в процессе изготовления различных керамических изделий.

Водопоглощение керамических материалов характеризует количественную величину их пористости и соответственно степень спекания, которая в свою очередь влияет на многие рабочие свойства изделий строительной керамики: морозостойкость, паро- и воздухопроницаемость, сцепление с раствором, загрязняемость и др. Диапазон этого показателя для изделий строительной керамики в зависимости от их вида и назначения довольно велик—от 1-30%.

Предел прочности при сжатии R керамических материалов зависит от их состава и структуры и уменьшается с увеличением размера образца. Наиболее важное значение Rсж имеет для изделий стеновой керамики, которые воспринимают большие нагрузки в зданиях и сооружениях. По этому показателю стеновые изделия маркируют, принимая за марку среднюю величину по результатам испытания пяти образцов.

Читайте также  Материалы для устройства мягкой кровли

Для изделий строительной керамики Rсж находится в пределах 7,5—70 МПа.

;

Между прочностью керамического материала R и его объемной массой прослеживается зависимость, имеющая вид кубической параболы:

а между прочностью пустотелых изделий R’сж и их объемной массой (брутто) отмечается зависимость вида квадратичной параболы (рис. 1)

.

Предел прочности при сжатии пустотелых изделий определяют с учетом их «рабочего» положения в стене.

Рисунок 1. Зависимость прочности от объемной массы

1 – пустотелых керамических изделий; 2 – образцов-кубиков пористой керамики.

Общую разрушающую нагрузку делят на площадь брутто.

Предел прочности при изгибе керамических материалов Rиз зависит от тех же факторов, что и R, с той лишь разницей, что здесь структура материала оказывает более резкое влияние на его сопротивляемость изгибу. Так, например, кирпич полусухого прессования имеет меньшую величину предела прочности при изгибе, чем кирпич пластического формования, изготовленный из тех же глин, хотя R последнего ниже, чем у кирпича полусухого формования.

Предел прочности при изгибе регламентируется ГОСТами для кирпича, поскольку в стене он испытывает не только сжимающие, но и изгибающие нагрузки, вследствие неровностей своей поверхности. Этот показатель регламентируется и для некоторых других керамических изделий. По нему также судят об относительной прочности испытуемого материала и используют его как косвенный показатель для характеристики некоторых других свойств глинистого сырья и обожженных изделий (связность, связующая способность, термостойкость).

Для керамических материалов Rиз находится в пределах 0,7—5 МП а.

Морозостойкостью называют способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности. Показателем морозостойкости является количество теплосмен, которое выдерживает материал без признаков разрушения.

Обстоятельные исследования по влиянию гранулометрии пор на морозостойкость керамических материалов выявили следующие положения:

все поры в керамическом материале (с точки зрения морозостойкости) могут быть разделены на три категории: опасные, безопасные и резервные;

опасные поры заполняются водой при насыщении на холоду. В них она удерживается при извлечении материала из воды и замерзает при температуре от —15 до —20° С. Диаметр этих пор от 200 до 1 мк для глиняного кирпича пластического прессования, от 200 до 0,1 мк для глиняного кирпича полусухого прессования;

безопасные поры при насыщении на холоде водой не заполняются, либо заполнившая их вода не замерзает при указанных температурах. Это обычно мелкие поры. Заполняющая их вода становится по существу пристеночной адсорбированной влагой, имеющей свойства почти твердого тела и температуру замерзания существенно ниже (—20° С);

резервные поры при насыщении на холоде полностью заполняются водой, но из них при извлечении образца из насыщающего сосуда вода частично вытекает вследствие малых капиллярных сил. Это крупные поры диаметром более 200 мк.

Согласно этим исследованиям, керамический материал будет морозостойким, если в нем объем резервных пор достаточен для компенсации прироста объема замерзающей воды в опасных порах.

Алгебраически это условие выражают (в %) формулой:

где С – структурная характеристика материала; Vр и Vоп – объем пор соответственно резервных (размером более 200 мк) и опасных.

Экспериментальная кривая зависимости морозостойкости полнотелого кирпича от его структурной характеристики (рис. 2) показывает, что при С 6.

Морозостойкость определяет долговечность керамических материалов при их службе в условиях воздействия на них внешней среды. Поэтому требования морозостойкости регламентированы ГОСТами для стеновых фасадных, кровельных и некоторых других изделии строительной керамики.

Рисунок 2. Зависимость морозостойкости глиняного кирпича от его структурной характеристики.

Теплопроводность керамических материалов зависит от их объемной массы (рис. 3.а), состава, вида и размера пор и резко возрастает с увеличением их влажности (рис. 3.б), так как теплопроводность воды [=0,58 Вт/(м-град)] выше теплопроводности воздуха.

Рисунок 3. Зависимость теплопроводности керамического материала

а – его объемной массы; б – его влажности.

[=0,029 Вт/(м-град)] в 20 раз. Замерзание воды в порах материала ведет к дальнейшему резкому возрастанию его теплопроводности, поскольку теплопроводность льда [=2,33 Вт/(м-град)] больше теплопроводности абсолютно плотного керамического черепка [=1,163 Вт/(м-град)] примерно в 2 раза, больше теплопроводности воды в 4 раза и больше теплопроводности воздуха в 80 раз.

Паропроницаемость действующими Гостами и ТУ не регламентирована. Однако в некоторых случаях она влияет на долговечность строительных конструкций.

Низкая паропроницаемость стеновых материалов может явиться причиной потения внутренней поверхности стен, особенно в зданиях с повышенной влажностью воздуха. По экспериментальным данным, коэффициент паропроницаемости плиток полусухого прессования с водопоглощением 8,5; 6,5 и 0,25% соответственно равен 0,155; 0,0525; 0,029 г/(м.ч. Па).

В многослойных стенах неодинаковая газопроницаемость отдельных слоев стены может вызвать накопление влаги в ее толще, последующее ее замерзание и отслаивание части стены (рис.4). По этой причине не вполне надежна сквозная фасадная облицовка стен глазурованными плитками, обладающими низкой газопроницаемостью [4].

Рисунок 4. Схема возникновения очага замерзшей влаги в многослойной стене: t — температура; mп — коэффициент паропроницаемости; 1 — основной слой стены с высокой паропроницаемостью; 2—фасадная облицовка с низкой газопроницаемостью; 3 — слой замерзшей влаги; / — изменение mп по толщине стены; //— изменение I по толщине стены.

Важнейшие свойства керамики

Заглянув в любую из комнат своего дома, мы почти наверняка увидим изделие из керамики. В кухне это прежде всего посуда, в ванной — плитка на полу и стенах, в гостиной — статуэтки на полках, в спальне — цветочные горшки, и так далее.

Этот материал наделен свойствами, которые дают возможность использовать его практически во всех сферах деятельности человека. Отметим, что керамику часто используют там, где необходима устойчивость к внешним агрессивным воздействиям: перепады температур, истирание, воздействие влаги и ветра.

Говоря о свойствах керамики, нельзя не упомянуть о том, что они в первую очередь зависят от типа. Тип керамики определяется составом масс, куда входят глина или каолин, отощающие вещества вроде кварцевого песка, а также различные плавни, их обработкой, длительностью и температурами обжига, особенностями глазурей. В зависимости от назначения, на выходе получаются изделия разной степени пористости и твердости, с различными показателями водопоглощения. Неизменность структуры и свойств керамики обеспечивается прочными химическими связями.

Керамические изделия характеризуются относительно высокой прочностью. Важно это потому, что от прочности зависит, в первую очередь, долговечность изделия. Прочность, в свою очередь зависит от пористости керамики. Поэтому самыми прочными считаются твердый фарфор и полуфарфор, а менее прочными — фаянс, майолика, мягкий фарфор. Также на прочность и твердость изделия влияют такие факторы, как добавленные в сырье примеси, технология изготовления, а также наличие микротрещин.

Влагонепроницаемость

Это то самое свойство, благодаря которому керамическая плитка является излюбленным материалом для отделки ванных комнат, санузлов, бассейнов, холлов, прихожих. То есть тех мест, где постоянно влажно. Вода не впитывается , а остается на поверхности, с которой ее легко собрать. Керамическая плитка легко моется и чистится, при этом она долго служит, не теряя привлекательного внешнего вида. Самым низким водопоглощением обладает глазурованная керамика. Именно из нее изготавливают посуду, которая долгие годы радует глаз хозяев.

Термостойкость

Это свойство обозначает, что керамика в состоянии выдерживать значительные перепады температур. Например, глазурованная керамика выдерживает перепад до 20 градусов не разрушаясь и не трескаясь. Термостойкость обусловливает использование керамики для изготовления посуды. Если бы не это свойство, чайник трескался бы всякий раз, как в него наливали кипяток для заварки. Наиболее термостоек фарфор и каменная керамика, из которой изготавливают чайники и чашки.

При этом керамика отличается плохой теплопроводностью, то есть неспособна удерживать в себе тепло. И если для напольной плитки это скорее недостаток, то для посуды — несомненный плюс: чашка с горячим кофе никогда не обожжет вам губы.

Экологичность

Керамика — это экологически чистый продукт. Для ее изготовления тщательно отбирается сырье, проходя проверку на радиоактивность. Этот материал безопасен для человека и животных, поскольку не выделяет никаких токсичных веществ в атмосферу или жидкость, если речь идет о посуде. Керамика имеет капиллярную структуру, что делает ее «дышашим» материалом. Стена под керамической плиткой не покрывается плесенью, а растение в керамическом горшке имеет доступ к воздуху.

Одновременно с этим керамика не поддается действию активных химических веществ и не впитывает их. Именно поэтому изделия из керамики можно мыть при помощи чистящих средств, не боясь испортить поверхность.

Ну и, наконец, нельзя не отметить эстетические свойства керамики. Изделия из нее весьма многообразны по форме, цвету, фактурам поверхности и способам декорирования. Керамика открывает широкий простор для фантазии дизайнеров и просто творческих людей.

Свойства и применение керамических материалов

Принципиальными недостатками керамики являются ее хрупкость и сложность обработки. Керамические материалы плохо работают в условиях механических или термических ударов, а также при циклических условиях нагружения. Им свойственна высокая чувствительность к надрезам. В то же время керамические материалы обладают высокой жаропрочностью, превосходной коррозионной стойкостью и малой теплопроводностью, что позволяет с успехом использовать их в качестве элементов тепловой защиты.

При температурах выше 1000°С керамика прочнее любых сплавов, в том числе и суперсплавов, а ее сопротивление ползучести и жаропрочность выше.

К основным областям применения керамических материалов относятся режущий инструмент, детали двигателей внутреннего сгорания и газотурбинных двигателей и др.

Режущий керамический инструмент. Режущая керамика характеризуется высокой твердостью, в том числе при нагреве, износостойкостью, химической инертностью к большинству металлов в процессе резания. По комплексу этих свойств керамика существенно превосходит традиционные режущие материалы – быстрорежущие стали и твердые сплавы (таблица 14.2).

Высокие свойства режущей керамики позволили существенно повысить скорости механической обработки стали и чугуна (таблица 14.3).

Читайте также  Какой кровельный материал лучше для дома?

Для изготовления режущего инструмента широко применяется керамика на основе оксида алюминия с добавками диоксида циркония, карбидов и нитридов титана, а также на основе бескислородных соединений – нитрида бора с кубической решеткой (-BN), обычно называемого кубическим нитридом бора, и нитрида кремния Si3 N4. Режущие элементы на основе кубического нитрида бора в зависимости от технологии получения, выпускаемые под названиями эльбор, боразон. композит 09 и др. имеют твердость, близкую к твердости алмазного инструмента, и сохраняют устойчивость к нагреву на воздухе до 1300 – 1400°С. В отличие от алмазного инструмента кубический нитрид бора химически инертен по отношению к сплавам на основе железа. Его можно использовать для чернового и чистового точения закаленных сталей и чугунов практически любой твердости.

Состав и свойства основных марок режущей керамики приведены в таблице 14.4.

Режущие керамические пластины используются для оснащения различных фрез, токарных резцов, расточных головок, специального инструмента.

Керамические двигатели. Из второго закона термодинамики следует, что для повышения КПД любого термодинамического процесса необходимо повышать температуру на входе в энергетическое преобразовательное устройство: КПД = 1 – T21. где Т1 и Т2 – температуры на входе и выходе энергетического преобразовательного устройства соответственно. Чем выше температура T1 тем больше КПД. Однако максимально допустимые температуры определяются теплостойкостью материала. Конструкционная керамика допускает применение более высоких температур по сравнению с металлом и поэтому является перспективным материалом для двигателей внутреннего сгорания и газотурбинных двигателей. Помимо более высокого КПД двигателей за счет повышения рабочей температуры преимуществом керамики является низкая плотность и теплопроводность, повышенная термо — и износостойкость. Кроме того, при ее использовании снижаются или отпадают расходы на систему охлаждения.

Вместе с тем следует отметить, что в технологии изготовления керамических двигателей остается ряд нерешенных проблем. К ним прежде всего относятся проблемы обеспечения надежности, стойкости к термическим ударам, разработки методов соединения керамических деталей с металлическими и пластмассовыми. Наиболее эффективно применение керамики для изготовления дизельных адиабатных поршневых двигателей, имеющих керамическую изоляцию, и высокотемпературных газотурбинных двигателей.

Конструкционные материалы адиабатных двигателей должны быть устойчивы в области рабочих температур 1300 – 1500 К, иметь прочность при изгибе не менее 800 МПа и коэффициент интенсивности напряжений не менее 8 МПа•м 1/2. Этим требованиям в наибольшей мере удовлетворяет керамика на основе диоксида циркония ZrO2 и нитрида кремния. Наиболее широко работы по керамическим двигателям проводятся в Японии и США. Японская фирма «Isuzu Motors Ltd» освоила изготовление форкамеры и клапанного механизма адиабатного двигателя, «Nissan Motors Ltd» – крыльчатки турбокомпрессора, фирма «Mazda Motors Ltd» – форкамеры и пальца толкателя.

Компания «Cammin Engine» (США) освоила альтернативный вариант двигателя грузовика с плазменными покрытиями из ZrO2. нанесенными на днище поршня, внутреннюю поверхность цилиндра, впускные и выпускные каналы. Экономия топлива на 100 км пути составила более 30 %.

Фирма «Isuzu» (Япония) сообщила об успешной разработке керамического двигателя, работающего на бензине и дизельном топливе. Двигатель развивает скорость до 150 км/ч, коэффициент полноты сгорания топлива на 30 – 50% выше, чем у обычных двигателей, а масса на 30 % меньше.

Конструкционной керамике для газотурбинных двигателей в отличие от адиабатного двигателя не требуется низкая теплопроводность. Учитывая, что керамические детали газотурбинных двигателей работают при более высоких температурах, они должны сохранять прочность на уровне 600 МПа при температурах до 1470 – 1670 К (в перспективе до 1770 – 1920 К) при пластической деформации не более 1 % за 500 ч работы. В качестве материала для таких ответственных деталей газотурбинных двигателей, как камера сгорания, детали клапанов, ротор турбокомпрессора, статор, используют нитриды и карбиды кремния, имеющие высокую теплостойкость.

Повышение тактико-технических характеристик авиационных двигателей невозможно без применения керамических материалов.

Керамика специального назначения. К керамике специального назначения относятся сверхпроводящая керамика, керамика для изготовления контейнеров с радиоактивными отходами, броневой защиты военной техники и тепловой защиты головных частей ракет и космических кораблей.

Контейнеры для хранения радиоактивных отходов. Одним из сдерживающих факторов развития ядерной энергетики является сложность захоронения радиоактивных отходов. Для изготовления контейнеров применяют керамику на основе оксида В2 О3 и карбида бора В4С в смеси с оксидом свинца РbО или соединениями типа 2РbО•PbSO4. После спекания такие смеси образуют плотную керамику с малой пористостью. Она характеризуется сильной поглощающей способностью по отношению к ядерным частицам – нейтронам и — квантам.

Ударопрочная броневая керамика. По своей природе керамические материалы являются хрупкими. Однако при высокой скорости нагружения, например в случае взрывного удара, когда эта скорость превышает скорость движения дислокаций в металле, пластические свойства металлов не будут играть никакой роли и металл будет таким же хрупким, как и керамика. В этом конкретном случае керамика существенно прочнее металла.

Важными свойствами керамических материалов, обусловивших их применение в качестве брони, является высокие твердость, модуль упругости, температура плавления (разложения) при в 2 – 3 раза меньшей плотности. Сохранение прочности при нагреве позволяет использовать керамику для защиты от бронепрожигающих снарядов.

В качестве критерия пригодности материала для броневой защиты М может быть использовано следующее соотношение:

где Е – модуль упругости, ГПа; Нк – твердость по Кнупу, ГПа; – предел прочности, МПа; Тпл – температура плавления, К; – плотность, г/см 3 .

В таблице 14.5 приведены основные свойства широко применяемых броневых керамических материалов в сравнении со свойствами броневой стали.

Наиболее высокие защитные свойства имеют материалы на основе карбида бора. Их массовое применение сдерживается высокой стоимостью метода прессования. Поэтому плитки из карбида бора используют при необходимости существенного снижения массы броневой защиты, например для защиты кресел и автоматических систем управления вертолетов, экипажа и десанта. Керамику из диборида титана, имеющую наибольшую твердость и модуль упругости, применяют для защиты от тяжелых бронебойных и бронепрожигающих танковых снарядов.

Для массового производства керамики наиболее перспективен сравнительно дешевый оксид алюминия. Керамику на его основе используют для защиты живой силы, сухопутной и морской военной техники.

По данным фирмы «Morgan M. Ltd» (США), пластина из карбида бора толщиной 6,5 мм или из оксида алюминия толщиной 8 мм останавливает пулю калибром 7,62 мм, летящую со скоростью более 800 м/с при выстреле в упор. Для достижения того же эффекта стальная броня должна иметь толщину 10 мм, при этом масса ее будет в 4 раза больше, чем у керамической.

Наиболее эффективно применение композиционной брони, состоящей из нескольких разнородных слоев. Наружный керамический слой воспринимает основную ударную и тепловую нагрузку, дробится на мелкие частицы и рассеивает кинетическую энергию снаряда. Остаточная кинетическая энергия снаряда поглощается упругой деформацией подложки, в качестве которой может использоваться сталь, дюралюминий или кевларовая ткань в несколько слоев. Эффективно покрытие керамики легкоплавким инертным материалом, играющим роль своеобразной смазки и несколько изменяющим направление летящего снаряда, что обеспечивает рикошет.

Конструкция керамической брони показана на рисунке 14.2.

Рисунок 14.2 – Конструкция керамической бронепанели: а, б – составляющие элементы бронепанели для защиты от бронебойных пуль разного калибра; в – фрагмент бронепанели, собранный из элементов а и б; 1 – бронебойная пуля калибра 12,7 мм; 2 – пуля калибра 7,62 мм; 3 – защитное покрытие частично снято

Бронепанель состоит из отдельных последовательно соединенных керамических пластин размером 50 * 50 или 100 * 100 мм. Для защиты от бронебойных пуль калибром 12,6 мм используют пластины из Аl2 О3 толщиной 15 мм и 35 слоев кевлара, а от пуль калибром 7,62 мм – пластины из Аl2 О3 толщиной 6 мм и 12 слоев кевлара.

Во время войны в Персидском заливе широкое использование армией США керамической брони из Аl2 О3. SiC и В4 С показало ее высокую эффективность. Для броневой защиты также перспективно применение материалов на основе AlN, TiB2 и полиамидных смол, армированных керамическими волокнами.

Керамика в ракетно-космическом машиностроении. При полете в плотных слоях атмосферы головные части ракет, космических кораблей, кораблей многоразового использования, нагреваемые до высокой температуры, нуждаются в надежной теплозащите.

Материалы для тепловой защиты должны обладать высокой теплостойкостью и прочностью в сочетании с минимальными значениями коэффициента термического расширения, теплопроводности и плотности.

Исследовательский центр НАСА США (NASA Ames Research Centre) разработал составы теплозащитных волокнистых керамических плит, предназначенных для космических кораблей многоразового использования. Свойства плит ряда составов приведены в таблице 14.6. Средний диаметр волокон 3 – 11 мкм.

Для повышения прочности, отражательной способности и абляционных характеристик внешней поверхности теплозащитных материалов их покрывают слоем эмали толщиной около 300 мкм. Эмаль, содержащую SiC или 94 % SiO2 и 6 % В2 О3. в виде шликера наносят на поверхность, а затем подвергают спеканию при 1470 К. Плиты с покрытиями используют в наиболее нагреваемых местах космических кораблей, баллистических ракет и гиперзвуковых самолетов. Они выдерживают до 500 десятиминутных нагревов в электродуговой плазме при температуре 1670 К. Варианты системы керамической теплозащиты лобовых поверхностей летательных аппаратов приведены на рисунке 14.3.

Рисунок 14.3 – Система керамической теплозащиты лобовых поверхностей летательных аппаратов для температур от 1250 до 1700 о С: 1 – керамика на основе SiC или Si3 N4 ; 2 – теплоизоляция; 3 – спеченная керамика

Высокопористый волокнистый слой теплоизоляции на основе FRCI, АЕТВ или HTR защищен облицовкой из слоя карбида кремния. Облицовочный слой предохраняет теплоизолирующий слой от абляционного и эрозионного разрушения и воспринимает основную тепловую нагрузку.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: